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Abstract: Ecosystem monitoring is central to effective management, where rapid reporting is essential to
provide timely advice. While digital imagery has greatly improved the speed of underwater data collection
for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In
recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad
applications in modern society, offering new opportunities for increasing the capabilities of coral reef
monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks
for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the
advantages of automated image analysis for coral reef monitoring in terms of error and repeatability
of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement
between expert and automated observations (97%). Repeated surveys and comparisons against existing
monitoring programs also show that automated estimation of benthic composition is equally robust in
detecting change and ensuring the continuity of existing monitoring data. Using this automated approach,
data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining
commonly used underwater imagery in monitoring with automated image annotation can dramatically
improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited
resources, rapid reporting and data integration within and across management areas.
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1. Introduction

In a rapidly changing world, robust and accurate ecological information is essential for plausible
management responses to the potential collapse of many ecosystems [1,2]. While hypothesis-driven
and adaptive management are critical in effective applications of monitoring for conservation [3], our
ability to access and process ecological data has been limited [2]. Consequently, there is an important
need to reduce the time and cost of ecological surveys.

Long-term monitoring of coral reef ecosystems influences the implementation of successful policies
and management actions [4,5]. However, monitoring coral reefs is expensive and requires specialized
technical knowledge. Furthermore, given the remoteness of coral reefs and the need for scuba diving,
monitoring often results in scattered or spatially constrained long-term datasets [6]. To lessen costs and
maximise applications, monitoring has increased the use of underwater digital photography across
modest spatial scales [7–9]. However, analysing the digital information within each image (e.g., RGB
intensity, texture) to provide ecologically relevant metrics (e.g., benthic composition) often requires a
substantial amount of time from experts (e.g., ecologists and taxonomists) before the information is
ready to inform conservation decisions. This delaying effect creates a substantial bottleneck in the flow
of information from monitoring programs to conservation practitioners.

A promising approach to eliminating the bottleneck in data processing for coral reef monitoring
is artificial intelligence (AI) and its application through machine learning. Here we refer AI to the
capacity of non-human entities (e.g., a computer) to simulate process distinctive of human cognition,
such as “learning” and “decision-making”, in order to autonomously accomplish a specific task [10].
In this context, machine learning is a field of computer science in which computers are able to learn
tasks without being explicitly programmed for them [11]. Increasingly, the applications of machine
learning have made use of techniques defined as deep learning [12]. Conventional or shallow machine
learning methods (e.g., Support Vector Machine) are limited by requiring careful engineering of feature
extractors to transform the raw data from the image (pixel values) into suitable representations from
which the learning algorithm classifies objects within an image. One of the greatest advances of deep
learning is that it makes it possible to automatically discover the features needed for classification, and
thus is capable of resolving intricate structures in high-dimensional data [12]. As such, deep learning
has set new standards in image [13] and speech [14] recognition, as well as contributing to advances
in drug discovery, brain circuit reconstruction [12], ecology [15] and remote sensing [16]. Here, we
pose the central question of whether advances in automated image recognition could accelerate image
analysis in coral reef monitoring and at what cost.

This study builds on previous research highlighting the benefits of machine learning in automated
analyses of underwater coral reef images [17,18]. While machine learning can vastly accelerate the
rate at which images are analysed for ecological studies, more advanced techniques can render more
useful applications in ecology by reducing the error introduced by automated classification (e.g., [15]).
Here, we explored the applications deep learning as a tool to assist coral reef monitoring and evaluated
its performance on automated image annotation. Our expectations were that, in order to be a useful
and reliable tool for monitoring, automated image annotation should be capable of: (1) reproducing
expert estimates of abundance by ensuring minimal estimation errors, (2) detecting change over time
with the same statistical power than traditional methods, (3) preserving long-term integrity of data
by being comparable to other monitoring programs, and (4) ensuring cost-effectiveness. To assess
these key points, this study evaluated the automation of image analysis for monitoring across a global
dataset within five bioregions (Western Atlantic Ocean, Central Indian Ocean, Southeast Asia, Eastern
Australia and Central Pacific Ocean). Based in these results, we discuss the feasibility and advantages
of coral reef monitoring facilitated by machine learning, and provide access to training data, models
and source code for further development and implementation of this method.
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2. Materials and Methods

2.1. Dataset

Underwater images (hereafter image or images) were collected by the XL Catlin Seaview Survey
(XL-CSS), a project aimed at understanding spatial and temporal patterns of the world coral reefs
using a customised diver propulsion vehicle that comprised of three DSLR cameras (Cannon 5D
Mk II and Nikon Fisheye Nikkor lens with 10.5 mm focal length). Images were taken every three
seconds as the diver travelled along the seascape at a relative speed of approximately 0.7 m.s−1, at a
distance from the seafloor of about 1.5 m and overall depth of 10 m. Each dive resulted in a transect of
approximately two kilometres in length. Images were cropped to 1 m2, using the distance from the
seafloor captured by a transponder to standardise the spatial resolution of an image to an average of
10 px.cm-1. No artificial illumination was used for capturing the imagery, but light exposure to the
sensor was manually adjusted by modifying the ISO during the dive (see [18,19] for details).

This open access data repository [20] comprises images and benthic annotations on these images
from five different global regions in the period from 2012 to 2016: Central Pacific Ocean, Western
Atlantic Ocean, Central Indian Ocean, Southeast Asia and Eastern Australia (Figure 1). Within each
region, multiple reefs were surveyed in a total of 22 countries. Individual sets of images were selected
per region for: (1) training models for automated image analysis and (2) evaluating their performance
on the estimations of benthic coverage (Table 1). All images were adjusted by colour, exposure and
scale prior to being used to train the deep learning networks (Supplementary Material, SM1, Figures S1,
S2 and S3).
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Figure 1. Global bioregions where the performance of automated image annotation was evaluated.
Each region is comprised of surveys in multiple countries and reef locations represented by the filled
dots colour-coded according to the survey region (Table 1). Base map source: Reef at Risk revisited
(base map, www.wri.org/publication/reefs-risk-revisited).
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Table 1. Summary statistics of data employed for this study. This includes the number of test and training
images, labels and taxonomic complexity of the label-set used per region in the classification process.

Region Country Training
Images

Test Images Test
Transects

Labels Taxonomic
Complexity

Western Atlantic
Ocean

Anguilla

449

50 5

38 Moderate to
Low

Aruba 30 3
The Bahamas 150 12
Belize 115 13
Bermuda 60 8
Bonaire 115 8
Curacao 90 7
Guadeloupe 75 6
Mexico 115 11
Saint Martin 25 2
Saint Vincent and the
Grenadines 60 7

Saint Eustatius 25 1
Turks and Caicos
Islands 50 4

Eastern Australia Australia 1234 1426 130 22 High

Central Indian Ocean
The Chagos
Archipelago 359 331 29

33 High
Maldives 1125 540 52

Southeast Asia

Taiwan 350 300 27

35 High
Timor-Leste 547 330 29
Indonesia

752
600 50

The Philippines 300 24
The Solomon Islands 439 300 29

Central Pacific Ocean United States 501 660 60 21 Moderate to
Low

Total 22 5756 5747 517 64

2.2. Deep Learning for Automated Image Classification

2.2.1. Overview

This study builds on a long line of work in Artificial Neural Networks (ANN) [12], in particular on
the use ANN for supervised classification of underwater images of coral reef benthos. Artificial Neural
Networks are computing systems for machine learning inspired by biological neural networks. Such
systems learn to do tasks by considering examples where images are classified based on associations.
Deep Learning is a learning algorithm part of the family of machine learning methods based on ANN,
built on the assumption that observed data are generated by the interaction of layered factors that
explain a pattern (e.g., an object in an image). In this study, we used Convolutional Neural Networks
(CNN), a class of deep learning networks commonly applied to analyse visual imagery.

After passing through the CNN, an image becomes abstracted into features or factors that are
organised in a hierarchical way, where higher level factors or more abstract concepts (e.g., an object or a
landscape) are learned from lower level or more basic layers (e.g., circles, square edges). Based on this
concept, the CNN architecture uses a cascade of many layers to extract and transform features from an
image. Each successive layer uses the output from the previous layer as input that construct more
complex features that start resembling objects in the higher-level layers. In this way, the Convolutional
Neural Network, hereafter referred to as network, is organised by layers forming a hierarchy from
low-level to high-level features.

As the network is trained with a set of manually classified images the signal propagates back
and forward through the network and the importance of each feature is weighted (backpropagation),
through a number of iterations until the network reaches a maximum accuracy (Figure S4). This
way the network helps to disentangle the abstractions of an image and pick out which features are
more useful for improving the performance of the automated classification. The interpretation of the
network output is done in terms of probabilistic inference, where the network outputs a probability
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(i.e., posterior probabilities) that an image belongs to each of the proposed labels or classes and,
the predicted label with the highest probability is chosen for the classification.

Here, we used VGG-D 16 [21], a convolutional neural network architecture pre-trained or initialised
on a large dataset comprised by ten million images and one thousand classes, ImageNet [22] (please
refer SM2 for more details). The network parameters were fine-tuned by training iterations with our
training dataset (Table S1, Figure S5), where the final fully connected layer, containing the classification
units, was replaced by the specific label-set of the data (Table 1 and Table S2).

A network was trained for each country within the regions, except for the region Western Atlantic
Ocean and the countries The Philippines and Indonesia, where one network was trained for each group
using data from each country (Table 1). This means that, to produce classifications on new images, an
additional manual intervention is required to select a trained network selected from a specific region
before producing the automated classification. The classifications from each network were aggregated
per region to evaluate the overall performance of CNN classifiers in this work. Countries within each
region shared the same label-set, while regions comprised a unique taxonomic composition (SM3,
Table S2).

2.2.2. Classification of Random Point Annotations

The network architecture implemented here has been designed for image classification, i.e.,
assigning a class to the whole image or scene. Here, however, we are interested in learning to automate
random point annotation, i.e., the assignment of one class to a particular location in an image. This
method, also referred to as random point count, is commonly used in many population estimation
applications using photographic records [23]. In random point annotations, the relative cover or
abundance of each class is defined by the number of points classified as such relative to the total
number of observed points on the image.

The random point count methodology was used to generate annotations for two independent
datasets for each region or country (Figure 2). One dataset, the training dataset (Figure 2A,C),
corresponds to randomly selected images from the country or region that define each network. This
dataset comprised between 350 and 1224 images were 100 points were manually classified by experts
to train each network model. The second dataset, the testing dataset (Figure 2B,C), is described in the
section below, comprises images manually annotated to define the reference dataset used to evaluate
the performance of automated annotations from each network. The testing dataset was selected as a
separate set of images from the training dataset to ensure complete independence from the data used
to train the network models.

To achieve automated random point annotation, we converted each image to a set of patches
cropped out around each given point location (i.e., image patch). The patch area to crop around
each point was set fix to 224 × 224 pixels to align with the pre-defined image input size of the VGG
architecture [21]. During the training process, the training dataset was used to fine-tune the network
parameters through backpropagation, resulted in a fully trained network model. Once training
achieved, the performance of the network was evaluated against the test dataset, where only the
cropped image patches were provided to the trained network to infer the labels for each image patch
(Figure S6, detailed in SM2).

Training and deployment (i.e., inference) of networks were implemented in Python using the
“caffe” deep learning framework (cafee.berkeleyvision.org). All computations were performed on
AWS Cloud Computing P2 instances, GPU scalable virtual computers configured for high-performance
computing (Amazon Web Services, Amazon Inc., USA).

cafee.berkeleyvision.org
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Figure 2. Methodological diagram to illustrate the workflow used in this study for training and testing
Convolutional Neural Networks (CNN) for coral reef benthic monitoring. From a given region or
country, images were selected in two groups: Training images (random selection) (A), and Test images
(aggregated within test transects) (B). Both sets of images were manually annotated using the random
point count methodology to create a training dataset (C) and test dataset (D). Datasets were comprised
by cropped patches from each random point in an image (image patches) and labels assigned to each
patch (annotations). To train the network, we used an initialised CNN (VGG16) finetuned through
backpropagation on the training set (E). The fully trained network was then used to classify the test
images (Inference) (F), and contrast the predicted labels (i.e., Machine) against the observed annotations
(i.e., observer) in the test dataset.

2.3. Performance of Automated Image Annotation

2.3.1. Test Transects

We evaluated the performance of automated estimations of abundance on the set of images and
manual annotations defined above as testing dataset. This dataset was a selection of contiguous images
within transects with an extent of 30 m in length, concomitant with most coral reef monitoring programs
e.g., [24–26] and best represents the spatial heterogeneity within a site [18]. Therefore, we aggregated
the images from the 2 km transects within a standard transect length of 30 m, hereafter called “test
transects” (SM4). Test transects were selected at random, within the 2 km transects, while ensuring
that no test transect contained images used for training the networks. The benthic composition within
these transects was averaged across images and contrasted between the two methods evaluated in this
study: manual vs. automated annotation. A total of 5,747 images, within 517 test transects (Table 1),
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were annotated by the networks, hereafter called “machine”, and a trained human observer, hereafter
called “observer”.

Considering the aim of this study in evaluating the use of machine learning for coral reef
monitoring, images were grouped within transects for three main reasons: (1) consistency in the
definition of sample unit for coral reef monitoring; (2) evaluating the ability of automated methods in
detecting change over time; and (3) compatibility of observations with existing monitoring data to
evaluate continuity in coral reef monitoring data. In terms of consistency, image-based monitoring
defines a sample unit as an aggregation of images that represent the condition of benthic communities
in a given location (e.g., transects or quadrats within a site). Therefore, the aggregation of images
within transects allowed evaluating the performance of automated estimation within a scale that
is consistent with monitoring sampling units, accounting for the variability in benthic abundance
estimation among images. Because the aggregation of images within sampling units allows to capture
the condition of a reef site or location in a given point in time, this aggregation made possible the
evaluation of changes over time when considering sampling errors in the placement of such images
within permanent or semi-permanent transects. Lastly, being consistent in terms of sampling units
also allowed to contrast automated estimations with existing monitoring data from external programs
to evaluate the long-term integrity of monitoring archives when implementing novel technologies for
automation. Should a reader be interested in the metrics of performance described below at the image
level, please refer to SM4 (Figure S7).

2.3.2. Absolute Error (|E|) for Estimation of Abundance

An error metric was used to represent the overall difference between machine and observer
abundance estimations for each label. Machine estimations tend to be unbiased from observer
estimations but rather noisy (i.e., mean of difference between machine and human tend to zero with a
variance around the mean, Appendix A). Therefore, we evaluated the Absolute Error (|E|) to estimate
the variability in the machine estimates when compared against observer estimations of abundance of
a given label. The absolute error (hereafter name error) for each label (i) was calculated as the absolute
difference between the abundance estimated by the machine (m) and the observer (o; Equation (1)).
The error was calculated and compared at two aggregation levels: (a) major functional groups and (b)
full label-set, sensu González-Rivero et. al. [18]:

|E|i = |mi − oi| (1)

2.3.3. Community-Wide Performance

To evaluate the machine performance for estimating community composition, pair-wise
comparisons of manual and automated estimations of benthic composition within each test transect
were performed using the Bray-Curtis similarity index. This index is sensitive to misrepresentation in
the automated estimation of abundance for specific labels or benthic groups when compared against
manual observations. Therefore, index values of 100% will represent a complete resemblance between
machine and observer estimations for community composition. While the Absolute Error already
provides a metric for label-specific performance of automated annotations, the community-wide
analysis lay out a synthesis analysis to understand how closely represented is the automated estimation
of benthic composition against manual observations across the range of community assemblages
within a region.

2.3.4. Ability to Detect Temporal Changes in Coral Cover

The consistency of the error over time can influence the capacity of machine-based monitoring to
replicate the detectability of temporal trends by expert observations. The introduced variability may
hinder the detectability of small changes (using similar size), limiting the applications of machine-based
monitoring. A power analysis was used to evaluate whether machine-based analyses can replicate the
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detectability of change in coral cover from expert observations (power) across a gradient of coral cover
changes over time (size effect).

For transects surveyed in multiple years in Australia, Central Indian Ocean and Central Pacific
Ocean, the absolute change in coral cover was compared between observer and machine estimations.
Power was calculated in R (v3.4.0) using a paired t-test function (power.t.test) to account for repeated
surveys within transects [27].

2.3.5. Data Continuity in Coral Reef Monitoring

Long-term continuity in monitoring is essential to identify baseline patterns, detect early warning
signals and ensure robust forecasting of the ecosystem trajectories [2]. Novel technologies, therefore,
need to preserve the long-term integrity of monitoring archives [28]. To evaluate this, we contrasted
automated estimations of coral cover (XL-CSS data) against manual estimations from different
monitoring programs using a linear mixed-effect regression (LME). In this regression, pairwise average
estimations of coral cover per site were compared between methods (fixed effect), accounting for each
site within monitoring programs (random effect).

Four programs, in three of the surveyed regions, coincided with XL-CSS survey sites: Bermuda
Reef Ecosystem Analysis and Monitoring (BREAM, Bermuda Zoological Society, Atlantic; [25]), Long
Term Monitoring Program (LMTP, Australian Institute of Marine Science, Australia; [26]), Coral Reef
Assessment and Monitoring Program (CRAMP, Hawai’i Institute of Marine Biology, Pacific; [24]),
and National Coral Reef Monitoring Program (NCRMP, National Oceanographic and Atmospheric
Administration, Pacific; [29]). These programs commonly use photography and manual point-count
scoring of these images to extract the coverage of benthic groups. Monitoring sites were selected based
on the proximity to the XL-CSS sites (within a radius of two km, SM5 and Table S3).

2.4. Cost-Benefit of Implementing Deep Learning in Coral Reef Monitoring

Our final question assessed the viability of automated analysis in existing coral reef monitoring
program. In an attempt to address this question, we performed a cost-benefit analysis circumscribed to
the image analysis, based on our experience. Cost, efficiency and performance of automatically and
manually annotated images were contrasted. In terms of costs, we calculated the unit value of processing
an image by an expert observer compared to the estimated cost of automated image processing using
the cloud computing services (Amazon Inc.). We used the casual hour rates for an experienced biologist
at the University of Queensland (US $33.83/hr, HWE 5, https://staff.uq.edu.au/information-and-services/
human-resources/pay-leave-entitlements/pay-scales/professional-research) as well as the efficiency of
this expert annotator (images.hr-1) to estimate the cost of manually annotating a single image. In the
case of machine learning, this calculation was comprised of two main components: the cost of cloud
computing time and the cost of manually annotating images for training and testing the network.
Also, an additional ongoing cost is considered in the form of the expert labour and computational time
required every time a new set of images needs to be processed. In terms of efficiency, we contrasted
the productivity of annotation (images.hr-1), manually and automatically (SM6).

The performance of automated image annotation was calculated as described above. The range
of errors observed across the label-set was against the interval of errors for multiple observers
(inter-observer variability), previously estimated using the same label-set and images from the
Australia region [18].

3. Results

3.1. Deep Learning Performance

Network estimations of benthic coverage were highly correlated with observer estimations
for all five global regions (R2 =0.97, P < 0.001, Figure A1), better than shallow learners (SVM,
Figure A2). The differences between the machine and observer were unbiased across the spectrum

https://staff.uq.edu.au/information-and-services/human-resources/pay-leave-entitlements/pay-scales/professional-research
https://staff.uq.edu.au/information-and-services/human-resources/pay-leave-entitlements/pay-scales/professional-research
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of benthic coverage (mean ~ 0), and the variability around the mean difference was estimated at 4%
(Critical Difference or 95% Confidence Interval of the difference) for all labels across the study regions
(Figures 3, 4 and A1).

Among major functional groups (e.g., hard corals, algae), the error in abundance estimations
varied most notably among classes and less so among study regions (Figure 3). Algae was the most
variable class (3%–5% error). Hard and soft corals were the second most variable group in terms of
error. The abundance of hard corals estimated by the machine showed a higher agreement in the
Atlantic and Pacific Ocean regions, where the error ranged between 1% and 2%. For the other regions,
the error for hard corals ranged between 3% and 5%. Other classes showed a consistent error below 2%
(Figure 3).

Within major groups (i.e., higher taxonomical resolution), the error of machine estimates was
more consistent, with the only exception of classes within the Algae group (Figure 4). Epilithic
Algal Matrix (EAM), as a functional group, comprised by a diverse number of algae groups (e.g.,
macroalgae, cyanobacteria) was the most variable label (5%–7% error). The error of estimations, within
the hard-coral groups, remained below 2% among regions, while soft corals, in particular “Other
Soft corals” showed an error of up to 3%. This label is comprised by a large diversity of genera and
growth forms, while more taxonomically defined labels showed an error below 2%. The remaining
classes within the groups of “Other”, comprised mainly by substrate categories (e.g., sand, terrigenous
sediment), and “Other Invertebrates”, comprise of benthic invertebrates other than hard and soft corals,
showed a consistently low error (below 1%–2%; Figure 4).

Across community assemblages within regions, the estimations of benthic composition were
between 84% and 94% similar to observer estimations across regions, irrespective of the differences
in community structure among and within regions (Figure 5). Across regions, Australia exhibited
the lowest values of similarities, 84%, while automated estimations of benthic composition from the
Central Pacific Ocean shared 94% similarity with manual observations.
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Figure 3. Absolute Error (|E|) for the automated estimation of functional group abundance per region.
Solid and error bars represent the mean and 95% Confidence Intervals of the error, respectively.
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The analysis of the power of detection for temporal trends showed that both machine and observer
estimations of change in coral cover were very similar across a gradient of change in coral cover (effect
size; Figure 6a), both reaching a power above 0.8 when the effect size (i.e., absolute change in coral
cover) was above 4%. Similarly, the number of samples required to achieve a power of 0.8 was the
same for either machine or observer estimations across the effect size (Figure 6b).

Automated coral cover estimates from our survey imagery (XL-CSS) were contrasted against
reported values from different monitoring programs, to evaluate data continuity in long-term
monitoring. Pair-wise comparison in coral cover estimations by automated image analyses and
those by each monitoring surveys shows an overall agreement across regions and an average error of
2.9%, in line with the errors reported above (LME, P = 0.691, error = 2.9%, Figure 7).
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Figure 7. Comparison in coral cover estimates between automated and manual assessments from four
major monitoring programs (shapes) across regions (colours). The fine dotted line represents the line
where estimations from monitoring programs and machine learning are equal. The thick dotted line
and the dark-grey region represent the linear mixed-effect regression (LME) model predictions and
standard error intervals, respectively. The model significance of pair-wise comparisons (P) and the
average mean absolute error (Error) across monitoring sites is shown in the plot area.
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3.2. Cost–Benefit Analysis of Implementing Deep Learning

The cost of annotating a single image by an expert was estimated at US$ 5.41, while using machine
learning was only US$ 0.07 (1.3% of the cost for manual image annotation, Figure 8a,b). Furthermore,
the error of network estimations was comparable to the error associated with multiple observers.
However, a slightly higher variance of the error was observed in the machine estimations compare
to the inter-observer error (Figure 8c). In terms of productivity, networks can annotate 1200 images
per hour, while manually this would require 16 h of continuous work. This rate of productivity is
equivalent to a 200-fold increase compared to traditional manual image annotation.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 22 
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It is important to highlight that ongoing costs for this automated framework should also be
considered to cover the expert labour and computational time required every time a new set of images
is to be processed. Depending on whether this new image set requires a new architecture, training and
calibration for the CNN network, or just the implementation of a pre-trained and calibrated network,
these costs are estimated to range between US$600 and $1740 for every 50k images, based on our
experience (see SM6 for more details).

4. Discussion

Automated estimations of benthic coverage were in agreement with those manually generated
by expert observers for all five global regions. Similarly, Williams et al. [30] found high consistency
between the cover estimations done by machine and observers using images from Hawaii and American
Samoa and CoralNet, which is an online platform designed for automated image analysis based on
deep learning (www.coralnet.ucsd.edu). The use of deep learning was also superior in performance
when compared to shallow learning approaches (i.e., Support Vector Machine, SVM). With low errors,
comparable power in detecting temporal trends to expert observations and a productivity that is at
least 200x higher than manual labour, at fractional cost of manual data extraction (1%), the results of
the present study make a very strong case for implementing deep learning in coral reef monitoring.
It is important to add a couple of caveats. Firstly, there are limitations in terms of the taxonomic
resolution, which may or may not be important depending on the question being asked. The ability of
machines to detect objects is, however, likely to improve over time as machine learning innovations

www.coralnet.ucsd.edu
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continue to escalate. Secondly, while monitoring of coral reefs can benefit from fast processing and
data standardisation powered by automated image analyses, an integration between human expert
observations and machine learning may be recommended in some circumstances.

According to our results, the errors introduced by implementing deep learning in automated
abundance estimations (2%–6%) are within the range of previously reported inter- and intra-observer
variability for established monitoring programs (e.g., 2%–5%, Long Term Monitoring Program, AIMS,
Australia; [8]), where the variability introduced by automated estimations of abundance are well below
the range of spatial and temporal changes observed in nature [8,9,31]. Concomitantly, the introduced
error by automated annotations had little influence over the detection of change in coral cover, because
the statistical power for detecting significant change resulted virtually identical between expert and
automated estimations. Furthermore, data continuity was not constrained by implementing automated
image processing given that these estimations are highly compatible with established monitoring
programs, which ensures consistency in long-term monitoring [2]. Therefore, we conclude that
errors introduced by networks are unlikely to limit the effectiveness of machine-based systems in
monitoring change.

4.1. Challenges and Further Considerations in Automated Benthic Assessment

Challenges posed by the visual identification of species from imagery, taxonomic/functional
definition of labels, inter-observer variability in abundance estimations and innate aspects of automated
image annotation can partially explain observed errors.

As one label typically contains several morphologically diverse taxa, the taxonomical complexity
or potential number of species within a label can introduce variability in the accuracy of automated
classifications. The definition of labels influences the error of automated classifiers, in terms of innate
capacity of the machine to identify each label, as well as the error introduced by inter-observer
variability in the training of network models. A key example is the algae group, comprised of a
large number of species, with an estimate of 630 for the Great Barrier Reef alone [32], and are only
represented here by five functional groups or labels (Epilithic Algal Matrix, Macroalgae, Crustose
Coralline Algae and Cyanobacteria). Therefore, variations in the visual attributes that define each
species within a label adds confusion in terms of identification [17,30]; also observed here. Arguably,
inter- and intra-observer variability drives larger errors per class because the training and test datasets
derive from variable observer estimations [8,17,18]. While separating both effects (machine-introduced
and inter-observer error) can be difficult, more defined labels will yield to lower errors in automated
analyses [17]. This can be observed when comparing the overall error and community-wide agreement
among regions, where more defined label-sets and lower taxonomic complexity (e.g., Eastern Atlantic
and Central Pacific, Table 1), showed the lowest error and highest community similarity between
manual and machine observations. Arguably, a relationship between mean observed values and the
variance of automated annotations could explain that aggregated labels (e.g., Hard Corals) will be
more abundant than taxonomically defined labels (e.g., Montastraea cavernosa) and therefore present
larger errors. However, an analysis of the error of automated estimations across the mean of observed
values shows no bias or over dispersion of the error (Figure A1). However, the aggregation of labels
into larger benthic categories may carry forward sources of error in machine annotations that lead to
slightly larger discrepancies between machine and observer estimations.

Visual traits of coral reef benthos can also pose several challenges for estimations of abundance.
Among these traits, there are: (1) plasticity of forms, (2) visual similarity among phylogenetically
distinctive organisms (e.g., algae and corals, soft-corals and hard-corals), (3) undefined shapes and
edges (e.g., algae), (4) intricate growth among organisms (e.g., algal matrices), and (5) different
magnification scale required to accurately identify organisms.

Environmental regimes (e.g., wave action and light) can heavily influence the morphology of
sessile organisms [33]. A single taxonomical classification can be visually distinct in response to
environmental regimes, thus introducing variability in the training data. For example, hard coral species
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from the genera Orbicella and Siderastrea, typically from massive mound or branching morphologies,
but in light deficient environments (e.g., at depth), the same species will adopt plating morphologies,
maximising their capacity to capture light [34]. Considering morphological traits in the classification
scheme may allow to account for phenotypical plasticity among environmental regimes, maximising
the consistency of the training dataset, hence the machine performance.

Ill-defined edges, patchiness, intricate growth and the different resolution of taxonomic attributes
in marine benthos can also add complexity in their identification using point-based abundance
estimations. A clear example is the classification of algae, which consistently showed the highest
error (3%–6%) across regions, concurring with other studies [17,18,30]. If the definition of the algae
is too patchy (e.g., turf algae) or it is growing among other algae species (e.g., macroalgae), higher
magnification maybe needed to resolve its taxonomy. The approach used here for automated image
identification defines a fixed window size, on which the machine extracts and weights the importance
of visual attributes (e.g., texture, colours) to assign a label. Well-defined and large organisms, such
as corals and soft corals, showed the lowest error (1%–2%) when observed in our window size. This
window size, however, penalises the estimation of smaller, patchy or less defined organisms, such as
Epilithic Algal Matrix (EAM, error ~ 3%–6%). Using multi-scale or regional networks to account for
the taxa-specific model sensitivity (e.g., [35]) may help by increasing versatility in the definition of the
region of interests and maximising the accuracy of abundance estimations. Furthermore, light spectral
signature (e.g., fluorescence, reflection) may offer an alternative to expand the parameters that define
phototrophic or pigmented organisms [36,37].

Machine learning is a constantly evolving field and a diversity of alternative classifiers and
software frameworks are available. While the VGG architecture, used in this study, remains in the
top tier of image classifiers in terms of classification errors [38], newer and deeper convolutional
neural network models are less computationally intense (faster) architectures, slightly improving in
classification error benchmarks [39]. Similarly, newer software frameworks (e.g., Tensorflow, Keras)
are now faster and easier to implement than Caffe, offering greater versatility in its applications [40].
Further work to compare the network architecture and software framework will provide a better
overview for choosing the best configuration that fits the purpose of individual applications of
this technology.

Looking forward, this work comprises a specific network model for each country/region (Table 1)
and a more advanced system, accounting for the geographic origin of the data, will facilitate its
applications in global monitoring. Furthermore, propagating the classification uncertainty from the
machine into statistical analyses will ensure a more robust integration and interpretation of monitoring
data (e.g., [41]).

4.2. Implications of Automated Benthic Assessments for Coral Reef Monitoring

It is important to understand the cost-effectiveness of machine-based monitoring relative to more
conventional methodologies. Here, we demonstrated several breakthrough steps with machine-based
monitoring. These include scale, repeatability, rigour, speed of reporting, and cost-effectiveness.
While it is argued here that automated image analysis is not to replace expert observations in
monitoring, the higher efficiency (200×) and lower costs (1.3%, plus reduced ongoing costs) provide
compelling reasons for being adopted over conventional human-based techniques. This advantage
becomes clearer when one considers the large volume of images [18], increasing demand for reporting
(e.g., [42]) and large management extents [1]. Automated image annotation offers the possibility
of alleviating back-logs and accelerating the availability of detailed and accurate monitoring data,
allowing relocating limited resources (e.g., expert staff) towards detailed and needed observer-derived
data (e.g., biodiversity assessments). In this way, automated assessments can provide an avenue to
expand the detail in monitoring by reallocation of resources, while significantly reducing the reporting
time for large scale metrics (e.g., changes in composition).
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Machine-based monitoring has the advantage of data integration, where once an image is collected,
it can be revisited and automatically processed over time. Data integration often generates invaluable
insights on the status and trends of ecosystems at global and regional scales [43,44]. Nonetheless, much
more could be done to harness the vast amounts of data collected by government agencies, NGOs,
citizens and scientists [6]. As a common monitoring tool, images generate valuable and standardised
information, which paired with automated image analyses can ease data integration, without impairing
long-term data continuity. The number of open-access online tools for automated image annotation
and robust demonstrations of their applications across conservation disciplines [16,30,45,46] is rapidly
increasing. Critical steps are now needed to capitalise on these efforts [28,47] and maximise the
advantages of a global monitoring and conservation science empowered by machine learning.

5. Conclusions

Automated image recognition via Convolutional Neural Networks introduced an improved
image classification, compared to more classic machine learning approaches, with an unbiased
agreement between expert and automated observations of 97% and an overall error of 4%. Community
composition indices revealed that this agreement is also maintained at community levels (83%–94%
across bioregions). The error varied across taxonomic groups and indicate that a functional taxonomic
resolution, attainable by trained observers, is also possible by using automatic methods. The application
of artificial intelligence in automated image classification can reduce significantly the bottleneck in
data processing and reporting of coral reef monitoring by accelerating image analysis at least 200x, at a
fraction of the cost estimated for manual image annotation (1%).
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Absolute error (|E|) for automated estimation of benthic abundance within an image, Table S1: Configuration
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Appendix A

Overall Performance of Deep Learning Convolution Neural Networks

The overall performance of automated image annotation was evaluated by (1) correlating the
estimates of abundance (i.e., cover) produced by the machine against those produced by the observer
and (2) evaluating the overall agreement between machine and observer estimations using the
Bland-Altman plots, also called difference plots. Correlation was evaluated using the coefficient of
determination from a linear regression model, which also evaluated the significance of this correlation.
The coefficient of determination (R2) provides an indication of the intensity of the correlation by the
evaluating the co-variance between the observer and machine estimations. The Bland-Altman plot
determines differences between the two estimations against the observer estimations, or reference
sensu [48], used to evaluate: (1) the mean of the difference or bias of machine estimations, (2) the
homogeneity of the difference between techniques across the mean (over-dispersion) and, (3) the critical
difference or agreement limits. The latter refers to the range, within the 95% confidence interval, of the
difference between the two methods, and can be used as a reference to define where the measurements
fall out of the range of the agreement (precision of the agreement). Bias refers to the difference between
the two methods and the Bland-Altman plot can help visualising whether this bias change across the
mean of values evaluated, and therefore a measurement of the consistency of the bias [49].

When compared to a shallow learning approach, Support Vector Machine [18], deep learning
CNN was better at being able to resolve a wide range of benthic classes from the images (Figure A2).
While the correlation between benthic cover estimates from both methods compares closely to the
estimates obtained by observers (Figure A2a,b), the estimations from SVM are noisier compared to
deep learning CNN (R2 = 0.87 vs. R2 = 0.97; Figure A2), thus, a significantly lower precision errors
(Linear regression, P < 0.001) was detected among most functional groups using networks, with the
only exception of “Other invertebrates” (Figure A2c, refer Table S2 for a description of this label).

Typically, given a set of training examples, each marked as belonging to one or the other categories,
an SVM training algorithm builds a model that assigns new examples to one category or the others,
making it a non-probabilistic linear classifier. An SVM model is a representation of the examples as
points in space, mapped so that the examples of the separate categories are divided by a clear gap that
is as wide as possible. New examples are then mapped into that same space and predicted to belong to
a category based on which side of the gap they fall.

A Support Vector Machine solves an unconstrained optimization problem by maximising a loss
function defined by the weight vector of classifications for each label. The effectiveness of SVM
depends on the selection of kernel, the kernel’s parameters, and soft margin parameter (C). In the
SVM study, the authors used Gaussian kernel, which has a single parameter (Gamma). The best
combination of C and Gamma was optimised in grid search with exponentially growing sequences of
C and Gamma, contrasted against the loss function for a total of 40K iterations (sensu the approach
described here for Deep Leaning, Figure S4). Following this approach, the SVM model compared here
against the deep learning network was trained using a subset of same imagery annotations from this
work Eastern Australia, year 2012, following the approached described by Beijbom et al. [17] and the
results validated in Gonzalez-Rivero et al. [18].
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Figure A1. Overall agreement between network (machine) and manual (observer) estimation of
abundance (cover). Agreement is here discretised in two metrics: (a) Correlation between machine and
observer annotations and (b) bias. Each filled circle in these panels represents the estimated cover for a
single by the machine and the observer in a given transect. The correlation shows that estimations of
benthic abundance by expert observations are significantly represented by the automated estimations
(R2 = 0.97). The Bland-Altman plot shows that overall the differences (Bias) between machine and
observer tend to mean of zero (grey continuous line), and a homogenous error around the mean,
defined by Critical Difference (Critical Diff.) or the 95% confidence interval of the difference between
observers and machines (dashed grey lines).

It is important to note that machine learning is a constantly evolving field and a diversity of
alternative classifiers and software frameworks are available. The comparison between VGG and SVM
presented here only add to the evidence that deep learning CNN has a superior performance than other
shallow classifiers. While VGG remains in the top tier of image classifiers in terms of classification
errors, newer and deeper convolutional neural network models now offer less computationally intense
(faster) architectures, slightly improving in classification error benchmarks. Further work to compare
different deep learning CNN architectures for ecological classifications are advised to provide better
overview that help choosing the best machine learning configuration that fits the purpose of individual
applications in ecology.
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Figure A2. Comparison of abundance automatically estimated by Deep Learning CNN and Support
Vector Machines against manual annotations. The correlations between automated image annotation
and manual annotations for all labels show the overall performance of both methods: Support Vector
Machine (a) and Deep Learning CNN (b). Precision errors (or Absolute Errors) estimated within major
functional groups show a more detailed comparison between the two techniques, where estimations
of abundance by Support Vector Machine are more variable than those from Deep Learning CNN (c).
Bars represent the average precision error and error bars show the 95%- Confidence Intervals for each
functional group.
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